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ABSTRACT
We study how the nonlocal effects of the mean electromotive force affects the mean-field solar type dynamo model.
Following suggestion of Rheinhardt & Brandenburg (2012) we approximate the integro-differential equation for the
mean electromotive force by the reaction–diffusion type equation. This generalization alleviates the scale separation
approximation. Solution of the eigenvalue problem reveals a few curious properties of the dynamo model with the
nonlocal mean electromotive force. Besides a decrease of the critical dynamo instability threshold, reported in earlier
studies, there is an increase the dynamo periods of the unstable modes. Simultaneously, the nonlocal model shows
substantially lower growth rate of the unstable dynamo modes in vicinity above the critical threshold than the model
which employ the scale separation approximation. Also, for the nonlocal model, we find a number of the different
oscillating and steady dynamo modes can be excited in the close vicinity of threshold of the first unstable dynamo
mode. We verify these findings using the nonlinear dynamo model. The model shows the Parker’s dynamo wave
solutions with the wave propagating from the mid latitude at the bottom of the convection zone toward the solar
equator at the surface. In the weakly nonlinear regime, the interference of the dynamo mode of different spatial
localization results into the Grand activity cycles of a period about 300 years.
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1 INTRODUCTION

Since Parker (1955), the standard scenario of the solar mag-
netic cycle is based on the hydromagnetic dynamo, which
includes the cyclic transformation between toroidal and
poloidal components of the large-scale magnetic field of the
Sun. Steenbeck et al. (1966) put this idea on the theoret-
ical background, proposing the mean-field electrodynamics
framework. It was summarized in a number of textbooks, see,
e.g, Moffatt (1978); Parker (1979); Krause & Rädler (1980) .
The key theoretical ideas can be formulated as follows. Let

us consider the high conductive turbulent media and decom-
pose the magnetic field B and velocity field U on to mean and
fluctuating parts: B = B̄ + b, U = Ū + u. Here, we use the
small letters for the fluctuating part of the fields and capital
letters with a bar above for the mean fields. Substitution of
these decomposition into induction equation and the averag-
ing over ensemble of the random fields give us the evolution
equation for the mean magnetic field,

∂tB̄ = ∇×
(
Ē+Ū× B̄

)
, (1)

where the mean electromotive force, Ē,

Ē = u× b. (2)

It expresses the effects of the turbulence on the mean mag-
netic field evolution. To calculate Ē, we have to solve the
governing equations for the fluctuating velocity and magnetic
field. After using the scale separation approximation this can
be done analytically, e.g., with the double scale Fourier trans-
form (Roberts & Soward 1975) and the different assump-
tions about closure of the correlation’s chain (see, Roberts
& Soward 1975; Kitchatinov et al. 1994; Kleeorin et al. 1996;
Rädler & Rheinhardt 2007). Also the numerical estimation of
Ē is possible with the test-field method (Rheinhardt & Bran-
denburg 2010; Warnecke et al. 2018). In this case we avoid
the closure assumptions completely. The general structure of
Ē can be guessed from the properties of symmetries of trans-
formations of the velocity magnetic field and the assumption
about scale separation, as well. Following to Krause & Rädler
(1980) we write it as the Taylor expansion about spatial vari-
ations of the mean magnetic fields,

Ei = αijBj + ηijk∂kBj + ..., (3)

where αij is the “pseudo-tensor” which changes the sign un-
der reflection symmetry transformation. The αij can be fur-
ther decomposed into sum of symmetric an the antisymmetric
parts. The symmetric part of the αij stands for the turbulent
generation α-effect, and the antisymmetric part of the ten-
sor, which can be represented by vector, i.e., γi ≡ εifjα[fj]

(e.g., Krause & Rädler 1980) corresponds to the turbulent
pumping. The antisymmetric part of the third rank tensor
ηijk represents the turbulent eddy diffusivity.
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2 V.V. Pipin

The spatial and temporal scale separation, which is em-
ployed in the Eq(3) can be hardly justified by the solar obser-
vations. Indeed, the observations show the continuum spec-
trum of scales in variations of the photospheric magnetic field
variation in space (Vidotto 2016). The scale separation in
time variations pronounces greater, having two considerable
peaks at the scale of the solar rotation period and the second
peak corresponds to the 11-th year solar cycle. Still, it shows
the continuum spectrum with inclination of 2/3 in between
of these peaks (Frick et al. 2020). Similar results were found
from observations of the magnetic activity in the solar type
stars having the external convective envelope. Moreover, the
very active fast rotating stars can demonstrate the contin-
uum temporal spectrum of the magnetic activity (Stepanov
et al. 2020). Breaking of the scale separation assumption can
be easily seen in solutions of the mean-field solar dynamo
models, as well. Those solutions often show strong spatial
variations of the mean magnetic field near boundaries of the
dynamo domain(Chatterjee et al. 2011; Brandenburg & Chat-
terjee 2018; Pipin & Kosovichev 2019).
To account the strong variations of the mean magnetic field

in space and time we have to retain the higher order deriva-
tives in expression of E. Rädler (1976) and Raedler (1980)
suggested that the general conditions expression of E should
be written as a convolution between an integral kernel and
the mean field, e.g.,

Ei = Ĝij ∗Bj , (4)

where the asterisk means a convolution in space and time.
Similarly to the Eq(3), we can split it into two pieces and
write (Rheinhardt & Brandenburg 2012),

Ei = α̂ij ∗Bj + η̂ijk ∗ ∂kBj (5)

The direct numerical simulations (see, Brandenburg &
Sokoloff 2002; Rheinhardt & Brandenburg 2012; Bendre &
Subramanian 2022; Gressel & Elstner 2020) showed that in
the spectral space the kernel Ĝ is close to a Lorentzian form,
i.e., Ĝ ∼

(
1 + iωτ + `2k2

)−1, here τ corresponds to the tur-
bulent turnover time and ` characterizes the length scale on
which non-locality becomes important. In this paper, simi-
lar to Brandenburg & Chatterjee (2018), we accept the hy-
pothesis, Ĝ ∼

(
1 + iωτ + `2k2

)−1. The Lorentzian form of the
kernel G results into the partial equation for the mean elec-
tromotive force in parabolic form,(

1 + τ
∂

∂t
+ aEηT∇2

)
E = E(0)

, (6)

E(0)
= αijBj + ηijk∂kBj (7)

where, aE ≈ 0−1 is the spatial non-locality parameter (Bran-
denburg & Chatterjee 2018), the RHS of the Eq(7) corre-
sponds to the local expression of the mean electromotive force
obtained either numerically, e.g., by the test-field method or
analytically using the SOCA (second order correlation ap-
proximation), e.g., Roberts & Soward (1975) and Kitchatinov
et al. (1994), or the different forms of the tau approximations
(see, Kleeorin et al. 1996; Rädler et al. 2003; Pipin 2008) or
the other analytical methods. We have to note that unlike
SOCA, the tau approximation is also valid for the cases of
the developed turbulence characterized by the high Reynolds

numbers. Rädler & Rheinhardt (2007) gave the comprehen-
sive discussion of the analytical approaches for calculation of
the mean electromotive force.
Our goal is to study effects of the spatio-temporal non-

localities in the solar type dynamos and to compare them
with the reference dynamo model that utilizes the scale sepa-
ration approximation. We construct the nonlocal model using
the zero order approximation of the mean electromotive force
(E(0) from the Eq7) obtained with the minimal tau approxi-
mation by Pipin (2008). We used it in the reference dynamo
model of Pipin & Kosovichev (2019). Next section discusses
the model formulation. After that, we consider the results of
the eigen value problem and the nonlinear runs of the nonlo-
cal dynamo model. We resume the main findings in the last
section of the paper.

2 DYNAMO MODEL

Similarly, to Brandenburg & Chatterjee (2018) we solve the
magnetic field evolution using the mean field dynamo induc-
tion equation, the Eq(1) and the evolution equation for the
mean electromotive force in form of the Eq(6). The mean-
field is decomposed into a sum of the poloidal and toroidal
components, as follows:

B = φ̂B +∇×
(
Aφ̂
)
,

The zero order approximation of the mean electromotive force
is calculated using the scale separation assumption an the
minimal τ approximation (see, Pipin 2008) It reads,

E(0)
i = (αij + γij)Bj − ηijk∇jBk, (8)

here, αij describes the turbulent generation of the magnetic
field by helical motions (the α-effect), γij describes the turbu-
lent pumping, and ηijk is the eddy magnetic diffusivity ten-
sor. We take their analytical expression from results of Pipin
(2008) (hereafter P08). The α-effect tensor includes effects of
the magnetic helicity, i.e.,

αij = Cαψα(β)α
(H)
ij + α

(M)
ij ψα(β)

〈a · b〉 τc
4πρ`2c

, (9)

where the full expressions of the kinetic helicity tensor α(H)
ij

and the magnetic helicity tensor α(M)
ij are given in P08 and

also in Pipin (2022) (hereafter P22), a and b are the fluctu-
ating vector-potential and magnetic field, respectively. The
radial profiles of the α(H)

ij and α
(M)
ij depend on the mean

density stratification, profile of the convective RMS velocity
uc and on the Coriolis number Ω∗ = 2Ω0τc, where Ω0 is the
angular velocity of the star and τc is the convective turnover
time. In our model we assume that the convective turnover
time corresponds to the turbulent relaxation time of the E.
The magnetic quenching function ψα(β) depends on the pa-
rameter β =

∣∣B∣∣ /√4πρu2
c . Its expression, as well as analyt-

ical expressions for α(H)
ij and α

(M)
ij are given in Pipin(2008;

2022).
The magnetic helicity density evolution is governed by the

balance equation for the total magnetic helicity, 〈χ〉(tot) =
〈a · b〉+ A ·B, (see, Hubbard & Brandenburg (2012); Pipin
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Spatio-temporal non-localities in a solar-like mean-field dynamo 3

et al. (2013); Brandenburg (2018)):(
∂

∂t
+ U · ∇

)
〈χ〉(tot) = −〈a · b〉

Rmτc
+∇·ηχ∇〈a · b〉 , (10)

where, we use 2η〈b · j〉 =
〈a · b〉
Rmτc

(Kleeorin & Rogachevskii

1999). The second term in the RHS defines the diffusive flux
of the small-scale magnetic helicity density, we put ηχ = 1

10
ηT

(Mitra et al. 2010); Rm is the magnetic Reynolds number, we
employ Rm = 106.
The anisotropic diffusion tensor was given Pipin (2008) :

ηijk = 3ηT

{(
2f

(a)
1 − f (d)

2

)
εijk + 2f

(a)
1

ΩiΩn
Ω2

εjnk

}
(11)

where

f
(a)
1 =

1

4Ω∗ 2

((
Ω∗ 2 + 3

) arctan Ω∗

Ω∗
− 3

)
,

f
(d)
2 =

1

Ω∗ 2

(
arctan (Ω∗)

Ω∗
− 1

)
The antisymmetric tensor γij stands for the turbulent pump-
ing, which is usually considered (Krivodubskij 1987; War-
necke et al. 2018) as important ingredient of the solar dynamo
process. Following to Pipin (2022), we model it as follows,

γij = γ
(Λρ)
ij +

αMLTuc
γ

H (β) r̂nεinj, (12)

γ
(Λρ)
ij = 3νT f

(a)
1

{(
Ω ·Λ(ρ)

)Ωn
Ω2

εinj−
Ωj
Ω2
εinmΩnΛ(ρ)

m

}
(13)

where Λ(ρ) = ∇ log ρ, αMLT = 1.9 is the mixing-length the-
ory parameter, γ is the adiabatic exponent, uc is the RMS
convective velocity. The magnetic quenching function H (β)
are given in the above cited paper (also, see, Ruediger &
Brandenburg 1995).
We calculate the turbulent parameters using the mixing-

length approximation and the profile of the mean entropy.

uc =
`c
2

√
− g

2cp

∂s

∂r
, (14)

where `c = αMLTHp is the mixing length, αMLT = 1.9 is
the mixing length parameter, and Hp is the pressure height
scale. The entropy profile is defined by solving the mean-
field heat transport equation (see, e.g., P22) for the rotating
convection zone. It deals with deviations of the mean entropy
from the reference state due to effect of rotation and the
heat energy sink and gain from evolution of the large-scale
velocity and magnetic field. To calculate the reference profiles
of mean thermodynamic parameters, such as entropy, density,
temperature and the convective turnover time, τc, we use the
MESA model (Paxton et al. 2011, 2013). The Eq. (14) defines
the profiles of the eddy heat conductivity, χT , eddy viscosity,
νT , and eddy diffusivity, ηT , as follows,

χT =
`2

6

√
− g

2cp

∂s

∂r
, (15)

νT = PrTχT , (16)
ηT = PmTνT, (17)
ηE = aEνT . (18)

Here, we parameterize the E diffusivity profile with aE =

0.1−1, in following to Brandenburg & Chatterjee (2018). The
angular velocity profile, Ω (r, θ), and the meridional circula-
tion, U

(m), are defined by conservation of the angular mo-
mentum and azimuthal vorticity ω =

(
∇×U

(m)
)
, (Pipin &

Kosovichev 2019; Pipin 2022). In this paper we use the kine-
matic models excluding effects of the B on the large-scale
flow and heat transport. The model shows an agreement of
the angular velocity profile with helioseismology results for
PrT = 3/4. The dynamo models with local E show cycle pe-
riod of 22 years when PmT = 10 and Cα = 0.042. The level
Cα is slightly above the critical threshold, see the results in
the next subsection.
Figure 1 shows the profiles of the large-scale flows, the hy-

drodynamic α effect and the diffusivity profiles. We note the
inverse sign of the α effect tensor components and the ro-
tational quenching of the turbulent diffusivity profile toward
the bottom of the convection zone (marked by the dashed
line). The profile of ηE remains unsaturated and it follows
the parameters of the reference convection zone model.

3 RESULTS

3.1 Eigenvalue problem

As the first step we consider the eigen value problem. It helps
us to define the critical thresholds of the dynamo instabil-
ity and the eigen modes profiles. In this case we simplify
the model further and neglect the overshoot region below
the convection zone. At the bottom of the convection zone,
rb = 0.728R, we use the superconductor boundary conditions
for the mean electromotive force, Eθ,φ = 0, ∂rEr = 0 and for
the poloidal potential, A = 0. At the top, rt = 0.99R, we
put ∂r (rA) = 0, (radial magnetic field), B = 0, Er = 0, and
∂rEθ = 0. The numerical integration in radius and latitude
is done using the Galerkin method. In the radial direction
we decompose A, B and E on the Chebyshev polynomials
using the Gauss-Lobatto grid with 50 mesh points and in the
latitudinal direction we use the associated Legendre poly-
nomials P 1

n (θ) and the Gauss-Legendre grid with 72 points
from pole to pole. To satisfy the radial boundary conditions
we use the basis recombination method (Boyd 2001) . We
put the python code for solution the eigen value problem on
zenodo.
Figure 2 shows the growth rates and frequencies for the first

six eigen modes for the dynamo model with the local expres-
sion of the mean electromotive force, i.e., E ≡ E(0). Here, we
discuss the odd parity modes, which are antisymmetric about
the equator. The property of the obtained dynamo modes is
close to results of Pipin & Kosovichev (2019). Yet, the full
dynamo period is a bit less than theirs. It is about 14 years.
The difference is due to the absence of the overshoot region in
the given case. The even modes show very similar diagrams
except the first instability threshold for them is a bit higher
than Ccr

α ≈ 0.04 for the odd modes. Typically, for this kind
of dynamo models the even modes have a higher instability
threshold than the odd modes. Also, we did not find them
in the nonlinear runs. Therefore we omit their discussion in
below.
Figure 3 shows the instability diagram in the nonlocal dy-

namo model for two cases aE = 0.25, and aE = 0.75. In these
cases the instability threshold is lower than for the case of the

MNRAS 000, 000–000 (0000)
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a) b) c) r/R

+𝜂||

Figure 1. a) The meridional circulation (streamlines) and the angular velocity distributions; the magnitude of circulation velocity is of
13 m/s on the surface at the latitude of 45◦; b) the α-effect tensor distributions at the latitude of 45◦, the dash line shows the convection
zone boundary; b) radial dependencies of the total, ηT + η||, and the rotational induced part, η||, of the eddy magnetic diffusivity, the
eddy viscosity profile, νT and the the E diffusivity profile for aE = 1; hereafter we employ numpy/scipy (Harris et al. 2020; Virtanen
et al. 2020) together with matplotlib (Hunter 2007) for post-processing and visualization.

Im
(λ

),
 [

1/
yr

]

a)

R
e(
λ)

, [
1/

yr
]

b)

Figure 2. a) Growth rates of the first six eigen odd dynamo modes for the solar type dynamo model with the local mean electromotive
force, the x-axis show the maximum magnitude of the αφφ component in the convection zone; colors mark the different eigen modes; b)
shows the eigen frequency for each dynamo mode.

model with the local E. Brandenburg & Chatterjee (2018)
found the same tendency. Also, we see other new features.
Firstly, the increase of aE result into increase of the dynamo
period. Secondly, we observe a multiple instability for sev-
eral dynamo modes when the α effect parameter increases,
including the oscillating and steady modes. Thirdly, we find
that within the given range of the Cα magnitudes, the growth
rates in the nonlocal dynamo are comparable with the local
dynamo. The spatial structure of the eigen modes show a dif-
ference. It is illustrated in Fig.4. The first unstable dynamo
mode for r aE = 0.25 describe the dynamo propagating to-
ward the equator from bottom of the convection zone with
the period about 17 years. The second mode, which has the
dynamo period of about 64 years, is localized near the bottom
of the convection zone. Its propagation can be hardly guessed
from a complicated mode structure, see Figs.4 c) and d). We
will look at it closely in the next subsection considering the
nonlinear solution. The primary feature of this mode is the
enhance of the toroidal magnetic field in the polar branch.

3.2 Nonlinear model

The nonlinear dynamo model is based on the model of Pipin
& Kosovichev (2019). We consider the models both with in-
clude and exclude of the overshoot region. Here, we discuss
the kinematic dynamo models, i.e., we neglect effect of the
dynamo generated magnetic field on the heat transport and
the large-scale flow. In this case the dynamo saturation effects
are due to the magnetic helicity conservation, the “algebraic”
quenching of α effect and the magnetic buoyancy. We can
expect that the last two effects are quenched in depth of the
convection zone because of the non-locality (Brandenburg &
Chatterjee 2018), which is introduced by diffusivity of the
mean electromotive force. The parameters of the nonlinear
run are listed in the Table1. To illustrate the nonlinear dy-
namo solution we choose the case aE = 0.5 (C(cr)

α = 0.016)
and aE = 1 (C(cr)

α = 0.013).

Our basic example is the case N0. The time-latitude dia-
grams of the toroidal and radial magnetic field evolution are
shown in Figure5. We see that the model with the nonlocal E
preserves the basic properties of the earlier model of Pipin &
Kosovichev (2019). In the upper part of the convection zone

MNRAS 000, 000–000 (0000)
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Figure 3. The same as Fig.2 for the nonlocal model with the parameters aE = 0.25, top row, and aE = 0.75, bottom row.

Table 1. The parameters of the nonlinear runs. Here, B(max)
φ stands for the maximum of the toroidal magnetic field in the convection

zone; B(>60)
r is the mean magnitude of the surface radial magnetic field above 60◦ latitude; FT is the total unsigned flux of the toroidal

magnetic field in the convection zone; Pcyc is the half period of the magnetic cycle. We show the parameters of run M25 following results
of Pipin (2021), noteworthy,C(cr)

α = 0.04 for this case.

Fig. Cα/C
(cr)
α Overshoot aE B

(max)
φ ,

[kG]
B

(>60)
r ,

[G]
FT ,
1024[Mx]

Pcyc,
[yr]

N0 5, 6,8 2.2 + 0.5 3.2 6.5 1. 10.9
N1 8 1.1 + 0.5 0.7 0.45 0.11 30.2/25.1/272
N2 8 2.5 + 1 3.5 8.9 1.5 11.8
N3 8 2.2 - 0.5 3.1 3.5 0.9 9
N4 8 2.5 - 1 4.1 5.7 1.2 9.3
N5 7,8 1.1 + 0.75 1.1 0.53 0.13 28/35/326
M25 8 1.1 + 0 2.5 5.6 1.1 10.6

the dynamo wave of the toroidal magnetic field drifts toward
the equator. Similar to the above cited paper, this effect re-
sults from the joint action of the latitudinal pumping, merid-
ional circulation and the Parker-Yoshimura rule(Yoshimura
1975). Noteworthy, the magnitude of the α effect in run N0 is
less than the instability threshold of the reference case model
with the local E. At the surface the radial magnetic field drifts
toward the poles at high latitudes and toward the equator at
low latitudes. The polarity sign of these branches corresponds

to the leading and following polarity of the sunspot activity.
Interesting that both the toroidal and radial magnetic field
show the extended 20 yrs branches of activity in overshoot
region. This can be important for the origin of the solar tor-
sional oscillations.
Figure 6 illustrates snapshots of the magnetic field and

mean electromotive force profiles in run N0 for the half of
the magnetic cycle. The magnetic activity shows the dynamo
waves propagating from the mid latitude at the bottom of

MNRAS 000, 000–000 (0000)
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BφBφ

Re Im

BφBφ

a) b)

c) d)

Figure 4. Spatial profiles of the real and imaginary parts of the
eigen solution, color shows the toroidal magnetic field and contours
show the streamlines of the poloidal field; we normalized the spatial
profiles to maximum value. Panels a) and b) show the first unstable
mode for the nonlocal model with the parameters aE = 0.25; c)
and d) show the same for the second unstable mode.

yr

B
r,[
G
]

B
r,[
G
]

la
ti
tu
de

la
ti
tu
de

a)

b)

Figure 5. a) The time-latitude diagrams for the run N0, color im-
age shows the surface radial magnetic field and the toroidal mag-
netic field at r=0.9R, is shown by contours in range ±1.kG; b) the
same for the magnetic field in the overshoot layer, r=0.7R.

the convection zone toward equator at the surface. Evolu-
tion of the mean electromotive force shows the qualitative
similarity to results of the global convection simulations of
Racine et al. (2011). Our model shows the two order magni-
tude less Eφ than the results of the above cited paper. This
is because the α threshold for the dynamo instability is order
of magnitude less than the mixing length estimation of the
convection zone α (cf., Fig.1b and Fig.3). Also, the magni-
tude of the dynamo generated magnetic field in our model is
less than in results of Racine et al. (2011). The difference E-
E(0) shows the maximum near the bottom of the convection
zone, in location of the maximum of the toroidal magnetic
field strength. This is because of strong modulation of E(0)

by the dynamo generated magnetic field and the increase of
ηE in the low part of the convection zone.
It is interesting to look at the dynamo solution in vicinity

of the instability threshold. The Fig.7 illustrates solution for

a)

Figure 6. ,a) Snapshots for the magnetic field evolution in run
N0 for the half of the activity cycle, contours show streamlines of
the poloidal magnetic field; b) color image shows snapshots of Er
, contours show the difference Er-E

(0)
r for the same range of value

as the background color; c) and d) show the same as b) for Eθ and
Eφ, respectively.

run N5, where we use a slightly overcritical Cα = 1.1C
(cr)
α .

The solution show the order of magnitude less strength of
the dynamo generated magnetic field than in case N0. In the
upper part of the convection zone we find the qualitatively
similar pattern of the magnetic field oscillation with the full
dynamo period about 60 years and the Grand activity cycle
of about 300 year period. The most of the magnetic field flux
is concentrated at the interface between the overshoot region
and the convection zone. There we see two different patterns
of the magnetic field oscillations. At low latitudes the dynamo

MNRAS 000, 000–000 (0000)
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c)

Figure 7. a) The time-latitude diagrams for the run N5, color
image shows the surface radial magnetic field and the toroidal
magnetic field at r=0.9R, is shown by contours in range ±50G;
b) the same for the magnetic field in the overshoot layer, r=0.7R,
contours of the toroidal magnetic field are in the range ±1kG; c)
snapshots of the magnetic field variations for the half of the mag-
netic cycle of the equatorward propagating dynamo wave.

1

0.6

yr

a)

b)

1
5

Figure 8. The total unsigned flux of the toroidal magnetic field. a)
The runs with the single dynamo wave solution and supercritical
Cα ≈ 2.5C

(cr)
α ; b) the same for the slightly overcritical Cα ≈

1.1C
(cr)
α , and aE = 0.5 (N1), aE = 0.75 (N5).

waves propagate toward equator with the period of magnetic
activity about 30 years. At the mid latitudes there are waves
with a slightly shorter period of around 24 year. The beating
of the two dynamo waves of the different localization results
to the long-term modulation of the magnetic activity.
The integral parameters of the runs are listed in the Table1.

We find that increase of aE increases the generated magnetic
flux. The models which include the overshoot layer show the
longer dynamo period than those confined to the convection
zone. We find that in nonlinear case an increase of aE from

0.5 to 1 does not result to a substantial increase of the dy-
namo period. We take the run from Pipin (2021) to com-
pare the solar case dynamo model with our runs. The run
M25 (the above cited paper) employs the slightly overcritical
Cα = 1.1C

(cr)
α , where, C(cr)

α ≈ 0.04, and it has the higher am-
plitude of the α effect than the N’s runs presented here. The
run M25 run shows the similar magnitude of the total toroidal
flux to the runs N0, N2 and N4. The difference in the dynamo
period between the runs is because of lower dynamo insta-
bility threshold, C(cr)

α , for the nonlocal dynamo model. For
the slightly overcritical Cα, the nonlocal dynamo can show
the long-term variations of the magnetic activity cycles if the
parameter aE is large enough, see Fig.7a) and Fig.8b). These
long-term variations are due to interference of the dynamo
modes of different spatial localization, see Fig.7. The run N5
shows two waves of magnetic activity with close periods of
28 and 35 years. These waves start from about 30◦ latitude
and propagate in opposite directions. The mode interaction,
because of the non-locality produce the long-term cycle of pe-
riod 326 years. Interesting that in the run N1 the long-term
cycle disappear after a while. In this case, the modes inter-
action seems to result into nonlinear synchronization of two
waves.
We find that the dipole type parity solution dominates in

all the runs. In the nonlocal dynamo model the magnetic dif-
fusivity quenching and the meridional circulation result to
an increased concentration of the toroidal field to the bot-
tom of the convection zone. The study of Chatterjee et al.
(2004) showed that this effects makes the dipole type parity
preferable. The question about dependence of this property
from the radial profiles of the turbulent parameters should
be investigated separately.

4 DISCUSSION

We study effects of the nonlocal mean electromotive force
in the solar types dynamo models. Our formulation of the
nonlocal E follows the approach suggested by Rheinhardt &
Brandenburg (2012) and Brandenburg & Chatterjee (2018).
In following the results of the DNS, they suggested that the
general integro-differential equation for the mean electromo-
tive force can be replaced by the parabolic equation, see the
Eqs(6,7). The temporal non-locality was suggested earlier by
Brandenburg et al. (2003) in discussion of the so called min-
imal τ approximation (Brandenburg & Subramanian 2005).
With this approach we formulate the dynamo model that
steps over the scale separation approximation. There are both
the observational and theoretical requirements for this step.
In particular, both the mean-field and flux-transport dynamo
models can show a rather strong gradient of the magnetic field
near the boundaries of the dynamo domain. We show some
examples of this behavior for the distributed mean-field dy-
namo model in the paper. Also, the solution of the flux trans-
port dynamo model shows several thin magneto shears of the
different sign in the close vicinity of the bottom of the con-
vection zone (Dikpati & Charbonneau 1999; Jouve & Brun
2007; Kumar et al. 2019).
The study finds that the mean-field solar type dynamo

models preserve their basic properties even with the non-
local formulation of the mean electromotive force. Similar to
Brandenburg & Chatterjee (2018), we find that accounting

MNRAS 000, 000–000 (0000)
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for non-locality reduces the dynamo instability thresholds.
This effect results from the effective eddy diffusivity quench-
ing because of turbulent diffusion of the mean electromotive
force. The effect increase the efficiency of the differential ro-
tation and the flux transport by the meridional circulation,
as well. The increasing impact of the meridional circulation
results in a strong concentration of the toroidal magnetic field
toward the bottom of the convection zone. Quenching of the
turbulent electromotive force results to some other interest-
ing findings, as well. For example, we see that in the nonlocal
model, the growth rate of unstable modes is comparable to lo-
cal cases for the same magnitude of the α -effect. Reduction of
the dynamo instability growth rate is because of saturation of
the turbulent generation in the depth of the convection zone.
Also, the diffusive quenching of the magnetic buoyancy show
the stronger amplitude of the toroidal field in the nonlocal
model in compare to the model with local E. It is interesting
to verify the nonlocal form of E for the α2 dynamo models.
The decrease of the dynamo instability threshold and the

relatively low growth rates in vicinity of the C(cr)
α promote

generation of the several dynamo modes simultaneously in
the weakly nonlinear regime. I this case, the magnetic field
evolution concentrates near the bottom of the convection
zone and the different dynamo modes show the different dy-
namo period and different localization. Their interference re-
sult to the long-term variation solution for the weakly non-
linear case if the parameter aE is large enough and Cα is
close C(cr)

α . This phenomenon has the same nature as the
long-term oscillations because of the parity interaction of the
two dynamo modes with close frequency (Ivanova & Ruz-
maikin 1976; Brandenburg et al. 1989). Here, we have the
dynamo modes of the same parity but the different localiza-
tion and different directions of the dynamo wave propagation
(see, Fig7). The situation is completely different for the super-
critical cases when Cα > 2C

(cr)
α , where the only one dynamo

mode survives, while the dynamo instability analysis shows
the number of the unstable modes.
Finally, the most important result of the paper is that the

solar type dynamo model survives in conditions of the non-
local mean electromotive force after relaxing the two scales
separation approximation. Our deal with the turbulent non-
locality effects follows the hint of the DNS (Rheinhardt &
Brandenburg 2012; Gressel & Elstner 2020; Bendre & Sub-
ramanian 2022). Despite the suggested mean-field model lose
the connection with the fundamental physical laws, it demon-
strates a reasonable way to study stellar dynamos beyond the
mean-field approximations limits.
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